Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa).

Identifieur interne : 002378 ( Main/Exploration ); précédent : 002377; suivant : 002379

Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa).

Auteurs : Qingzhang Du ; Lu Wang ; Daling Zhou ; Haijiao Yang ; Chenrui Gong ; Wei Pan ; Deqiang Zhang

Source :

RBID : pubmed:25079429

Descripteurs français

English descriptors

Abstract

BACKGROUND

S-adenosyl-l-homocysteine hydrolase (SAHH) is the only eukaryotic enzyme capable of S-adenosyl-l-homocysteine (SAH) catabolism for the maintenance of cellular transmethylation potential. Recently, biochemical and genetic studies in herbaceous species have obtained important discoveries in the function of SAHH, and an extensive characterization of SAHH family in even one tree species is essential, but currently lacking.

RESULTS

Here, we first identified the SAHH family from Populus tomentosa using molecular cloning method. Phylogenetic analyses of 28 SAHH proteins from dicotyledons, monocotyledons, and lower plants revealed that the sequences formed two monophyletic groups: the PtrSAHHA with PtoSAHHA and PtrSAHHB with PtoSAHHB. Examination of tissue-specific expression profiles of the PtoSAHH family revealed similar expression patterns; high levels of expression in xylem were found. Nucleotide diversity and linkage disequilibrium (LD) in the PtoSAHH family, sampled from P. tomentosa natural distribution, revealed that PtoSAHH harbors high single-nucleotide polymorphism (SNP) diversity (π = 0.01059 ± 0.00122 and 0.00930 ± 0.00079,respectively) and low LD (r2 > 0.1, within 800 bp and 2,200 bp, respectively). Using an LD-linkage analysis approach, two noncoding SNPs (PtoSAHHB_1065 and PtoSAHHA_2203) and the corresponding haplotypes were found to significantly associate with α-cellulose content, and a nonsynonymous SNP (PtoSAHHB_410) within the SAHH signature motifs showed significant association with fiber length, with an average of 3.14% of the phenotypic variance explained.

CONCLUSIONS

The present study demonstrates that PtoSAHHs were split off prior to the divergence of interspecies in Populus, and SAHHs may play a key role promoting transmethylation reactions in the secondary cell walls biosynthesis in trees. Hence, our findings provide insights into SAHH function and evolution in woody species and also offer a theoretical basis for marker-aided selection breeding to improve the wood quality of Populus.


DOI: 10.1186/1471-2156-15-S1-S4
PubMed: 25079429
PubMed Central: PMC4118623


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa).</title>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Wang, Lu" sort="Wang, Lu" uniqKey="Wang L" first="Lu" last="Wang">Lu Wang</name>
</author>
<author>
<name sortKey="Zhou, Daling" sort="Zhou, Daling" uniqKey="Zhou D" first="Daling" last="Zhou">Daling Zhou</name>
</author>
<author>
<name sortKey="Yang, Haijiao" sort="Yang, Haijiao" uniqKey="Yang H" first="Haijiao" last="Yang">Haijiao Yang</name>
</author>
<author>
<name sortKey="Gong, Chenrui" sort="Gong, Chenrui" uniqKey="Gong C" first="Chenrui" last="Gong">Chenrui Gong</name>
</author>
<author>
<name sortKey="Pan, Wei" sort="Pan, Wei" uniqKey="Pan W" first="Wei" last="Pan">Wei Pan</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25079429</idno>
<idno type="pmid">25079429</idno>
<idno type="doi">10.1186/1471-2156-15-S1-S4</idno>
<idno type="pmc">PMC4118623</idno>
<idno type="wicri:Area/Main/Corpus">002064</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002064</idno>
<idno type="wicri:Area/Main/Curation">002064</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002064</idno>
<idno type="wicri:Area/Main/Exploration">002064</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa).</title>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Wang, Lu" sort="Wang, Lu" uniqKey="Wang L" first="Lu" last="Wang">Lu Wang</name>
</author>
<author>
<name sortKey="Zhou, Daling" sort="Zhou, Daling" uniqKey="Zhou D" first="Daling" last="Zhou">Daling Zhou</name>
</author>
<author>
<name sortKey="Yang, Haijiao" sort="Yang, Haijiao" uniqKey="Yang H" first="Haijiao" last="Yang">Haijiao Yang</name>
</author>
<author>
<name sortKey="Gong, Chenrui" sort="Gong, Chenrui" uniqKey="Gong C" first="Chenrui" last="Gong">Chenrui Gong</name>
</author>
<author>
<name sortKey="Pan, Wei" sort="Pan, Wei" uniqKey="Pan W" first="Wei" last="Pan">Wei Pan</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">BMC genetics</title>
<idno type="eISSN">1471-2156</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosylhomocysteinase (genetics)</term>
<term>Alleles (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Cell Wall (genetics)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Haplotypes (MeSH)</term>
<term>Linkage Disequilibrium (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Wood (enzymology)</term>
<term>Wood (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Adenosylhomocysteinase (génétique)</term>
<term>Allèles (MeSH)</term>
<term>Bois (enzymologie)</term>
<term>Bois (génétique)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Déséquilibre de liaison (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Haplotypes (MeSH)</term>
<term>Paroi cellulaire (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adenosylhomocysteinase</term>
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Wall</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Adenosylhomocysteinase</term>
<term>Bois</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Haplotypes</term>
<term>Linkage Disequilibrium</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Déséquilibre de liaison</term>
<term>Famille multigénique</term>
<term>Haplotypes</term>
<term>Phylogenèse</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>S-adenosyl-l-homocysteine hydrolase (SAHH) is the only eukaryotic enzyme capable of S-adenosyl-l-homocysteine (SAH) catabolism for the maintenance of cellular transmethylation potential. Recently, biochemical and genetic studies in herbaceous species have obtained important discoveries in the function of SAHH, and an extensive characterization of SAHH family in even one tree species is essential, but currently lacking.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here, we first identified the SAHH family from Populus tomentosa using molecular cloning method. Phylogenetic analyses of 28 SAHH proteins from dicotyledons, monocotyledons, and lower plants revealed that the sequences formed two monophyletic groups: the PtrSAHHA with PtoSAHHA and PtrSAHHB with PtoSAHHB. Examination of tissue-specific expression profiles of the PtoSAHH family revealed similar expression patterns; high levels of expression in xylem were found. Nucleotide diversity and linkage disequilibrium (LD) in the PtoSAHH family, sampled from P. tomentosa natural distribution, revealed that PtoSAHH harbors high single-nucleotide polymorphism (SNP) diversity (π = 0.01059 ± 0.00122 and 0.00930 ± 0.00079,respectively) and low LD (r2 > 0.1, within 800 bp and 2,200 bp, respectively). Using an LD-linkage analysis approach, two noncoding SNPs (PtoSAHHB_1065 and PtoSAHHA_2203) and the corresponding haplotypes were found to significantly associate with α-cellulose content, and a nonsynonymous SNP (PtoSAHHB_410) within the SAHH signature motifs showed significant association with fiber length, with an average of 3.14% of the phenotypic variance explained.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The present study demonstrates that PtoSAHHs were split off prior to the divergence of interspecies in Populus, and SAHHs may play a key role promoting transmethylation reactions in the secondary cell walls biosynthesis in trees. Hence, our findings provide insights into SAHH function and evolution in woody species and also offer a theoretical basis for marker-aided selection breeding to improve the wood quality of Populus.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25079429</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2156</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15 Suppl 1</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>BMC genetics</Title>
<ISOAbbreviation>BMC Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa).</ArticleTitle>
<Pagination>
<MedlinePgn>S4</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2156-15-S1-S4</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">S-adenosyl-l-homocysteine hydrolase (SAHH) is the only eukaryotic enzyme capable of S-adenosyl-l-homocysteine (SAH) catabolism for the maintenance of cellular transmethylation potential. Recently, biochemical and genetic studies in herbaceous species have obtained important discoveries in the function of SAHH, and an extensive characterization of SAHH family in even one tree species is essential, but currently lacking.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here, we first identified the SAHH family from Populus tomentosa using molecular cloning method. Phylogenetic analyses of 28 SAHH proteins from dicotyledons, monocotyledons, and lower plants revealed that the sequences formed two monophyletic groups: the PtrSAHHA with PtoSAHHA and PtrSAHHB with PtoSAHHB. Examination of tissue-specific expression profiles of the PtoSAHH family revealed similar expression patterns; high levels of expression in xylem were found. Nucleotide diversity and linkage disequilibrium (LD) in the PtoSAHH family, sampled from P. tomentosa natural distribution, revealed that PtoSAHH harbors high single-nucleotide polymorphism (SNP) diversity (π = 0.01059 ± 0.00122 and 0.00930 ± 0.00079,respectively) and low LD (r2 > 0.1, within 800 bp and 2,200 bp, respectively). Using an LD-linkage analysis approach, two noncoding SNPs (PtoSAHHB_1065 and PtoSAHHA_2203) and the corresponding haplotypes were found to significantly associate with α-cellulose content, and a nonsynonymous SNP (PtoSAHHB_410) within the SAHH signature motifs showed significant association with fiber length, with an average of 3.14% of the phenotypic variance explained.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The present study demonstrates that PtoSAHHs were split off prior to the divergence of interspecies in Populus, and SAHHs may play a key role promoting transmethylation reactions in the secondary cell walls biosynthesis in trees. Hence, our findings provide insights into SAHH function and evolution in woody species and also offer a theoretical basis for marker-aided selection breeding to improve the wood quality of Populus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Qingzhang</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lu</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Daling</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Haijiao</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gong</LastName>
<ForeName>Chenrui</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genet</MedlineTA>
<NlmUniqueID>100966978</NlmUniqueID>
<ISSNLinking>1471-2156</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.3.1.1</RegistryNumber>
<NameOfSubstance UI="D043383">Adenosylhomocysteinase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D043383" MajorTopicYN="N">Adenosylhomocysteinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006239" MajorTopicYN="N">Haplotypes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015810" MajorTopicYN="N">Linkage Disequilibrium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25079429</ArticleId>
<ArticleId IdType="pii">1471-2156-15-S1-S4</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2156-15-S1-S4</ArticleId>
<ArticleId IdType="pmc">PMC4118623</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1989 Nov;123(3):585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2513255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 1975 Apr;7(2):256-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1145509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Mar;133(3):693-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8454210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Sep;27(9):1497-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18592247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11562485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 21;284(34):22507-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19483083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jan;175(1):399-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Jan;29(1):81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Feb;5(1):74-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1973 May 15;76(2):241-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4737475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Aug;284(2):105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20577761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(4):e60880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23613749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Nov 19;577(3):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(2):515-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2008 Feb 12;363(1491):557-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2012 Feb;99(2):e46-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22268219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2000 Feb;18(1):27-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:53-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Parasitol. 2003 Oct;105(2):149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14969692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Dec;35(6):981-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9426618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):224-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e53116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Dec 12;19(18):2496-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6117-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Feb;197(3):763-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23278184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15932943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Nov 25;255(22):10822-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7430157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3158-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):239-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Am. 2009 Jun;300(6):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19485088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 26;315(5811):525-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Aug;182(4):1289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19487566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1968 Jun;38(6):226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24442307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Feb;17(2):404-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2004 Apr 1;294(2):325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15023523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Jun;8(6):590-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9647634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Sep;81(3):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jun;228(1):125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18350315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1959 Mar;234(3):603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13641268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2008 Jul;101(1):19-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18478029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):596-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22680066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(1):162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23157484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Apr 15;13(8):1806-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8168479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2012 Nov-Dec;103(6):853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23008443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Aug;49(4):859-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890013</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
<name sortKey="Gong, Chenrui" sort="Gong, Chenrui" uniqKey="Gong C" first="Chenrui" last="Gong">Chenrui Gong</name>
<name sortKey="Pan, Wei" sort="Pan, Wei" uniqKey="Pan W" first="Wei" last="Pan">Wei Pan</name>
<name sortKey="Wang, Lu" sort="Wang, Lu" uniqKey="Wang L" first="Lu" last="Wang">Lu Wang</name>
<name sortKey="Yang, Haijiao" sort="Yang, Haijiao" uniqKey="Yang H" first="Haijiao" last="Yang">Haijiao Yang</name>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
<name sortKey="Zhou, Daling" sort="Zhou, Daling" uniqKey="Zhou D" first="Daling" last="Zhou">Daling Zhou</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002378 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002378 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25079429
   |texte=   Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25079429" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020